标题: Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating
作者: Tian, FY (Tian, Fengyu); Zhang, HL (Zhang, Honglei); Liu, S (Liu, Shuai); Wu, T (Wu, Tao); Yu, JH (Yu, Jiahui); Wang, DH (Wang, Dihua); Jin, XB (Jin, Xianbo); Peng, C (Peng, Chuang)
来源出版物: APPLIED CATALYSIS B-ENVIRONMENTAL 卷: 285 文献号: 119834 DOI: 10.1016/j.apcatb.2020.119834 出版年: MAY 15 2021
摘要: Visible-light-driven CO2 reduction yielding commodity chemicals such as ethylene holds tremendous potentials for achieving a carbon-neutral circular economy in the energy and chemical industry. Despite the success of electrochemical CO2 reduction, efficient and selective ethylene generation has not been achieved by photo catalytic means because the intermediate dimerization fails to occur on existing photocatalysts. Here, we first demonstrate that the presence of sulfur vacancies in CdS (S-v-CdS) lead to reduced Cd-Cd distance and charge enrichment on Cd atoms. This structural relaxation and associated electronic structure tuning endow successful *CHO dimerization and hence ethylene generation. The photocatalyst can be optimized by coating S-v-CdS with ZIF-8 to form a core-shell structure, which presents further lowered energy barrier for both *CO hydrogenation and *CHO dimerization. With these combined intermediate manipulation strategies, the optimized photocatalyst exhibits a record-high ethylene selectivity of 12.8 % at a production rate of 0.8 mu mol g(-1) h(-1).
入藏号: WOS:000623241600003
语言: English
文献类型: Article
作者关键词: CO2 photoreduction; Ethylene; Structural relaxation; Intermediate dimerization; Combined intermediate manipulation
地址: [Tian, Fengyu; Zhang, Honglei; Wang, Dihua; Peng, Chuang] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.
[Tian, Fengyu; Zhang, Honglei; Wang, Dihua; Peng, Chuang] Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.
[Liu, Shuai; Wu, Tao; Yu, Jiahui] Univ Nottingham Ningbo China, New Mat Inst, Ningbo 315100, Peoples R China.
[Liu, Shuai; Wu, Tao; Yu, Jiahui] Univ Nottingham Ningbo China, Dept Chem & Environm Engn, Ningbo 315100, Peoples R China.
[Jin, Xianbo] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China.
通讯作者地址: Peng, C (通讯作者),Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.
Peng, C (通讯作者),Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.
电子邮件地址: Chuang.Peng@whu.edu.cn
影响因子:16.683
版权所有 © 太阳成tyc7111cc(股份)有限公司-搜狗百科
地址:湖北省武汉市珞喻路129号 邮编:430079
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:sres@whu.edu.cn